Synchronization Challenges on URLLC Networks

©2019 Rakon Limited

Contents

- Contract Section Se
- < URLLC features
- < Synchronisation requirements
- < Challenges

Focus of 5G

rakon

2

Usage scenarios of IMT for 2020 and beyond (source: ITU-R 3)

URLLC Key applications

rakon

Mission Critical / Factory Automation Applications

Remote factory controls

Remote operation / Telemedicine

Remote surgery (telesurgery)

< Autonomous Vehicles

□ 10s of "visibility" is critical (assuming 100km/h)

URLLC Key Parameters

rakon

< Latency

One-way delay until successful reception

Reliability - Packet Transmission success rate

- □ Function of many aspects distance, visibility, SNR, packet size etc.
- Throughput
- < Range
- < Connection density
- < Connectivity conditions
 - Mobility, Weather

Performance Targets

rakon

< Performance Targets

	Scenario	Latency Targets (ms)	Reliability Targets (%)
1	Motion Control	1	99.9999
2	Discrete Automation	10	99.99
2	Process Automation	50	99.9999
3	Monitoring	50	99.9
4	Intelligent Transport systems	10	99.9999
5	Tactile Interactions	0.5	99.999
6	Remote Control	5	99.999

LTE-A networks achieve 20-30ms Latency

Latency & Reliability of URLLC

rakon

6

Scheduling mechanisms

□ Pre-emption and free PUSCH data transmission

Credit : Ericsson

Redundant transmission

Carrier Aggregation or dual connectivity

URLLC requires new network Architectures

rakon

The support for CA and guaranteed synchronisation is essential to URLLC

CONFIDENTIAL INFORMATION

Frequency & Time Alignment Error Requirements

rakon

A+MIMO or TX diversity transmissions, at each carrier frequency65AIntra-band contiguous carrier aggregation, with or without MIMO or TX diversity130BA & Inter-band carrier aggregation, with or without MIMO or TX diversity260	Category	Applications Details	TAE (for Application)
AIntra-band contiguous carrier aggregation, with or without MIMO or TX diversity130BA & Inter-band carrier aggregation, with or without MIMO or TX diversity260	A+	MIMO or TX diversity transmissions, at each carrier frequency	65ns
B A & Inter-band carrier aggregation, with or without MIMO or TX diversity 260	А	Intra-band contiguous carrier aggregation, with or without MIMO or TX diversity	130ns
	В	A & Inter-band carrier aggregation, with or without MIMO or TX diversity	260ns
C 3GPP LTE TDD 1500	С	3GPP LTE TDD	1500ns

Radio Synchronisation Scenarios

rakon

9

• Point to point

Through Network

< From Network

< Independent

Synchronization Challenges

rakon

Time Grand Master Clocks

- Performance Improved Clocks
- □ Located close to end nodes

Transport Network Clocks

- High Performing Clocks
- Shorter Chains

< Radio Clocks

Synchronisation Challenges on Radio Clocks

Meeting 50ppb frequency accuracy

- Defined in 1ms
- Depends on the network noise into the Radio
- Depends on the filtering on the Radio

Meeting 130ns/260 phase error depends on

- The synchronization sources
- □ The servo architecture
- The reference clock performance

Meeting holdover depends on

- □ The servo features
- The thermal conditions
- The reference clock performances

Filtering

- 30ppb/75mHz proposed by ORAN
- System may choose other values

Time Alignment Error

- □ GNSS-> PTP-> SyncE-> Oscillator
- Thermal behavior of oscillator

< Holdover

- Performance of Servo
- Thermal, ageing & random behavior of oscillators

rakon

Reference Clocks

rakon

Medium-Term Stability

- Stability in the 5 20s duration
- Temperature sensitivity -> 0.1- 0.5ppb/degC

< Holdover

- □ Temperature stability -> 1 10ppb
- Ageing -> <1ppb/day</p>
- Low random noise

Shock and Vibration

- Contributes to EVM
- Performance -> ~1ppb/g

Other features

- Higher operating temperatures -> ~105 deg C
- Fast Start-up times
- □ Low power, Low profile

Phase noise performance

Impacts the contribution to EVM

Impact of phase noise on EVM – Better clocks

EVM limits on QAM modulation Phase noise contribution to EVM Synchronizer output Air Interface **Modulation Required EVM** 17.5% QPSK DAC & PA 16 QAM 12.5% SyncE & PTP 8% 64 QAM 3.5% 256 QAM eCPRI/ **RRH PLL** 1%? 1024 QAM Filters Ethernet EVM contribution of Clocks **RRH OCXO** ADC & LNA **Sub Carrier OCXO AT cut Ultra Low Noise** Traditional Spacing 122.88 MHz VCXO VCXO (simulated) 122.88MHz 122.88MHz 1Hz offset -71 Power 10Hz offset -100.3 -85 -70 100Hz offset -125.8 -121 -100 1kHz offset -140 -128 -143 10kHz offset -150.7 -158 -147 100kHz offset -159.3 -165 -157 1MHz offset -160.7 -169 -161 10MHz offset -160.7 -169 -163 EVM Contribution 0.05% 1.38% 0.22% on a 2.4GHz .075Hz 10KHz 40KHz 100KHz Frequency Carrier

13

rakon

Summary

- **<** URLLC requires high performance networks and architectures
- The application cases may be limited Deployment more centered to cities/industrial areas
- Synchronisation is key mechanism and methods of synchronization
- Reliable high performance reference clocks are essential to build URLLC networks

Thank you

Ullas Kumar

www.rakon.com